Sub-optimal Heuristic Search and its Application to Planning for Manipulation

April 26, 2014

Lecturer: Michael Phillips

Scribes: Hongyun Huang, Qing Liu, Chi Liu, Jia Zeng

Content

1. Suboptimal heuristic searches can be fast enough for high-D motion planning and return consistent good quality solution
 1.1 Planning with optimal heuristic search-based approaches
 1.2 Planning with sampling based approaches
 2. Example of planning for 20D arm in 2D

3. Suboptimal heuristic searches for High D Motion planning
4. Suboptimal heuristic searches for High D Motion planning
5. Anytime Search based on weighted A*
6. ARA*
 6.1 ARA* - based Planning for manipulation
 6.2 Plan with Experience Graphs
 6.3 Plan with E-Graphs for Mobile Manipulation

7. Conclusions
1. Suboptimal heuristic searches can be fast enough for high-D motion planning and return consistent good quality solution

1.1 Planning with optimal heuristic search-based approaches (e.g. A*, D*)
 ○ Advantages:
 ■ Completeness/optimality guarantees
 ■ Excellent cost minimization
 ■ Consistent solution to similar motion queries
 ○ Disadvantages:
 ■ Slow and Memory intensive
 ■ Used mostly for 2D planning

1.2 Planning with sampling based approaches (e.g. RRT, PRM)
 ○ Advantage:
 ■ Typically very fast and low memory
 ■ Used for high D motion planning
 ○ Disadvantage:
 ■ Completeness in the limit
 ■ Often poor cost minimization
 ■ Hard to provide solution consistency

2. Example of planning for 20D arm in 2D

![Figure 1: A 20D arm represented on 2D to illustrate the number of states available for planning](image)

- Each state is defined by 20 discretized joint angle (q1, q2...q20)
- Each action is changing one angle at a time.
- States are generated on-the-fly as search expands states
3. Suboptimal heuristic searches for High D Motion planning

- ARA* (Anytime version of A*) graph search: Effective use of solutions to relax motion planning problems
- Experience graphs: Heuristic search that learn from its planning experience

4. Suboptimal heuristic searches for High D Motion planning

![Diagram of A* search](image)

Figure 2: A* search. g(s) is the coming cost, and h(s) is the heuristic cost to the goal.

- A* Search: expand states in the order of $f=g+h$ values
- In A*, when s is expanded g(s) is optimal
- h(s) is the simplified version of the problem
5. Anytime Search based on weighted A*

![Diagram showing different expansions and solutions for various ε values]

- **Constructing anytime search based on weighted A***:
 a. Find the best path possible given some amount of time for planning
 b. Do it by running a series of weighted search with decreasing ε

- **Inefficient because**
 c. Many state values remain the same between search iterations
 d. We should be able to reuse the results of previous searches

6. ARA*

- Efficient series of weighted A* searches with decreasing ε

```plaintext
Compute Path with Reuse function
while (f(s_goal) > minimum f-value in OPEN)
remove s with the smallest [g(s) + εh(s)] from OPEN:
insert s into CLOSED.
for every successors’ of s
  if g(s’) > g(s) + c(s,s’)
    g(s’) = g(s) + c(s,s’);
    if s’ not in CLOSED then insert s’ into OPEN;
  otherwise insert s’ into INCONS
set ε to large value;
g(s_start) = 0; OPEN = {s_start};
```

Figure 3: Weighted A* searches with decreasing ε
CLOSED = {}; INCONS = {};
ComputePathwithReuse();
publish current ϵ suboptimal solutions;
decrease ϵ;
Inirialize OPEN = OPEN \cup INCONS

When using ARA*, the research is in finding a graph representation G and a corresponding heuristic function h that lead to shallow local minima for the search.

6.1 ARA* - based Planning for manipulation

- **Pros**
 - Explicit cost minimization
 - Consistent plans (similar inputs generate similar outputs)
 - Can handle arbitrary goal sets
 - Many path constraints are easy to implement
- **Cons**
 - Requires good path and heuristic design to plan fast
 - Number of motions from a state affects speed and path quality

6.2 Plan with Experience Graphs

- Many planning tasks are repetitive
 - Loading a dishwasher
 - Opening doors
 - Moving objects around a warehouse
- Can we reuse prior experience to accelerate planning, in the context of search-based planning?
- Would be especially useful for high-dimensional problems such as mobile manipulation!

6.3 Plan with E-Graphs for Mobile Manipulation

- **Pros**
 - Can lead the search around local minima (such as obstacles)
 - Provided paths can have arbitrary quality
 - Can reuse many parts of multiple experiences
○ User can control bound on solution quality

• Cons
○ Local minima can be created getting on to the E-Graph
○ The E-Graph can grow arbitrarily large

7. Conclusions

• Heuristic Search within sub-optimally bounds
○ Can be much more suitable for high-dimensional planning for manipulation heuristic search
○ Still provides
 ■ Good cost minimization
 ■ Consistent behavior
 ■ Rigorous theoretical guarantees

• Planning for manipulation solves similar tasks over and over again
○ Great opportunity for combining planning with learning